

Rev. 07/2008

VASASETTE SERIES DEGASSERS

VASASETTE SERIES DEGASSERS

PRODUCTION RANGE

TRODUCTION NAME										
VASASETTE DEGASSERS WITH HEAD PROTECTION CAP										
Figure	Code	Component	Size A	Size B	Connection	Туре				
B	37.05.70	Degasser	3/4"	1/2"	FF UNI-EN-ISO 228	Vasasette				

DESCRIPTION

Vasasette is an automatic float operated air relief valve.

PURPOSE

The pressure chamber has been designed to prevent contact between the impurities present on the free surface of the fluid and the seal device, especially at the pump start-up (pickup) .

It acts as a deaerator during the system filling phase, changing its function to a degasser during operation.

Due to its guaranteed top level operation, this component should be considered as a safety device for systems.

THE PRODUCTION RANGE

The **Vasasette** air relief valve is produced in just one model with 3/4" connections on the system side and 1/2" connections on the air vent side.

USE

The item has been designed for application on the service pipe of

heating and air conditioning systems.

For the high level mechanical resistance of the part, it is also used on mains water service pipes.

It is an excellent replacement for "breakaway tanks" located on buildings for the purpose of disconnecting the mains supply from the service line, preventing the latter from returning to the mains system in the event of a drop in water pressure.

When used on water service lines, it removes residual chlorine from the water preventing the start of galvanic processes and the perforation of pipes in the presence of modest stray currents (10 - 50 mA).

NOTES

The air vent area is shaped in such a way that an elbow pipe can be inserted to enable the condensate to be expelled when it is carried with the air leaving the system.

This condensate should be channelled into plastic polymer pipes that run into the drainage system.

CONSTRUCTION CHARACTERISTICS

Casing	Nickel-plated brass CW 617N UNI EN 12165
Elastomers used	EPDM and NBR
Float lever type made of polypropylene resin	
Spring	stainless steel AISI 302
Surface finish	Nickel-plated satin finish
Threaded connection	FF UNI-EN-ISO-228

TECHNICAL CHARACTERISTICS

Usable fluid	Water Water + Glycol 30%		
Maximum temperature of the fluid	100 °C		
Maximum working pressure	600 KPa (6 bar)		
Maximum pressure withstood	1000 KPa (10 bar)		

AUXILIARY COMPONENTS

Example of the application of the device to transfer acid condensate in heating systems and chlorine gas for water systems.

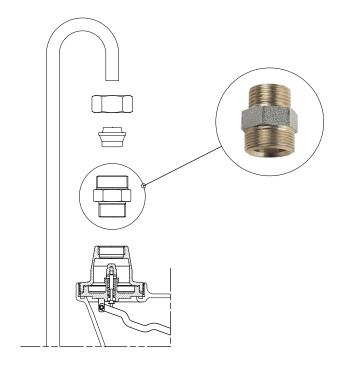
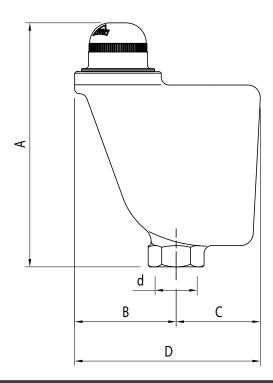
Connection by means of a 1/2 " (M) fitting – RBM (M)

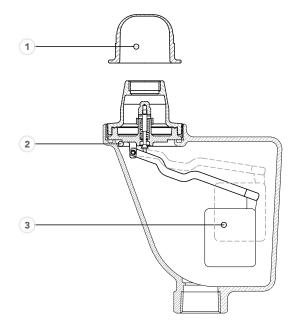
Art. code **83.04.00**

CHARACTERISTICS:

• Max. temperature: 110 °C

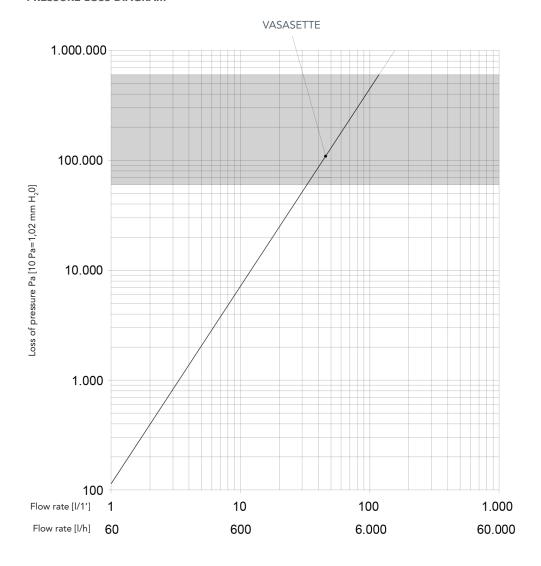
• Max. working temperature: 1000 KPa (10 bar)


Figure 1: Diagram of overall dimensions

CODE	d	A [mm]	B [mm]	C [mm]	D [mm]
37.05.70	G 3/4"	156	64,5	53,5	118

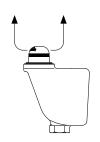
The sizes shown are in mm


Figure 2: Valve cross-section

- 1 Head protection cap
- 2 Pressure chamber
- 3 Float

CHARACTERISTICS OF FLUID MECHANICS

PRESSURE LOSS DIAGRAM


Field of use

Deaerator Vasasette

Gas discharge capacity during the filling phase of the system

Discharge of dissolved gasses such as:

- Air
- Oxygen
- Carbon dioxide
- Oxygen chlorine

 $Pa = (Q/K)^{m} \times 1.000.000$ $bar = (Q/K)^{m} \times 10$ $Q = (P/1.000.000)^{1/m} \times K = L/1'$ $Q = (bar/10)^{1/m} \times K = L/1'$ m = 2,7

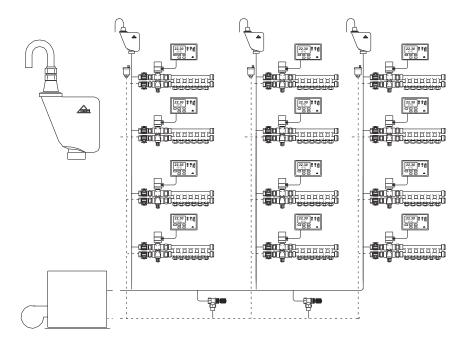
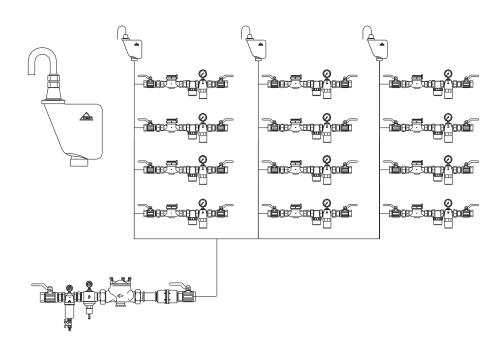
EXAMPLE APPLICATIONS

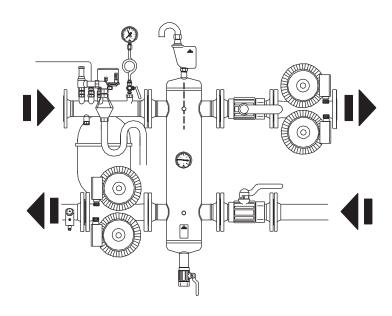
Fig. 1

Vasasette degassers fitted on the end of heating system service pipes in a block of flats.

It can be seen that the Vasa degassers are fitted on a lower level for easier access to open the pawl during the system emptying phase and to close it after the system has been filled.

The Vasasette does not require any monitoring.


Fig. 2
Vasasette degasser fitted on the end of the water distribution service pipes in a block of flats.

The function of the degasser is expressly for the residue chlorine present in the mains water system and sent indirectly to the service line.

The **Vasasette** also works as a deaerator for the high content of air present in the mains which is dissolved when the water goes through the filter, the reducer and the separator.

Fig. 3Typical example of the application of the **Vasasette** degasser on a hydraulic separator installed in a heating plant.

RBM spa reserves the right to improve and change the described products and related technical data at any moment and without prior notice: always refer to the instructions attached with the supplied components; this sheet is an aid, should the instructions be extremely schematic. Our technical office is always at your disposal for any doubt, problem or explanation.